

Hydrogen Fueled Ferry Feasibility Study and CFD Modeling of Leak Scenarios

Gabriela Bran-Anleu

Myra Blaylock, Joe Pratt

Sandia National Laboratories "Exceptional service in the national interest"

- Largest National Lab in U.S.
 - U.S. Department of Energy (DOE)
 - ~12,000 employees
 - ~US\$2.3B/yr from DOE, other federal agencies, and private industry
 - H2 Program in Livermore, CA (HQ in Albuquerque, NM)
- Hydrogen program: 60+ years technical depth in a wide range of areas, which we apply to enable impactful clean energy solutions

Sandia's Zero Emission Maritime Program

Maritime Hydrogen Fuel Cell Project (MarFC)

Zero Emissions Research Oceanographic Vessel (ZERO/V)

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

IMO code development
Examination of Maritime Hazardous
Zone Regulations Applied to Hydrogen

And more...

Visit: maritime.sandia.gov

Sandia's Zero Emission Maritime Program

Maritime Hydrogen Fuel Cell Project (MarFC)

Zero Emissions Research Oceanographic Vessel (ZERO/V)

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

IMO code development
Examination of Maritime Hazardous
Zone Regulations Applied to Hydrogen

And more...

Visit: maritime.sandia.gov

Outline

- SF-BREEZE Feasibility Study
 - Why H2
 - Initial design

- Gas Dispersion Analysis
 - Abnormal Blowdown from LH₂ Tank
 - 2. Normal "Boiloff"
 - 3. Leak in Fuel Cell Room

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

Examination of Maritime Hazardous Zone Regulations Applied to Hydrogen

Outline

- SF-BREEZE Feasibility Study
 - Why H2
 - Initial design

- Gas Dispersion Analysis
 - Abnormal Blowdown from LH₂ Tank
 - 2. Normal "Boiloff"
 - 3. Leak in Fuel Cell Room

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

Examination of Maritime Hazardous Zone Regulations Applied to Hydrogen

SF-BREEZE Project Concept

High-speed H₂ Ferry

Engineering model of the SF-BREEZE

Dockside Fueling Station

Example existing dockside hydrogen station in Hamburg, Germany

Red and White Fleet

- Founded in 1892
- Offers over 5,000 sightseeing trips/yr under the Golden Gate Bridge.
- Fleet: 4 passenger vessels, steel mono hulls, 350 to 600 pax.
- Run 6 Tier III engines and 10 Tier II engines across their fleet to provide a service with the highest level of environmental responsibility
- In 2014, Mr. Escher made a commitment to providing their services on a **zero emission vessel**

Hydrogen is a combustible fuel, very similar to natural gas, but does not contain *carbon*.

Hydrogen is the lightest gas

When hydrogen is used in a *Fuel Cell,* it produces **ZERO** pollution or greenhouse gas

When hydrogen is used in a *Fuel Cell,* it produces **ZERO** pollution or greenhouse gas

Hydrogen Fuel Cell Room

Hydrogen fueling stations and fuel cell electric vehicles are in the Bay Area today

Hyundai Tucson

Toyota Mirai

Honda Clarity

AC Transit buses

Ways to Store Hydrogen on the SF-BREEZE

Gaseous tanks

~2,000 psi steel or aluminum

5,000-10,000 psi carbon fiber composite assemblies

Liquid hydrogen

Metal Hydride

Liquid hydrogen is the lightest option for the SF-BREEZE

LH₂ has been safely used for decades

- LH₂ tanks are double walled vacuum insulated stainless steel tanks with steel shell.
- A typical trailer can deliver 4000 kg (~15,000 gallons) at a time.

Vessel design with LH₂ is similar to that with LNG

Commonalities

- Similar combustion properties
- Same safety design method:
 - Leak avoidance and monitoring
 - Minimize ignition sources
 - Provide ventilation

Major Differences

- H₂ is much more buoyant than
 CH₄ even when very cold
- LH₂ is colder and can condense/freeze air

For the same amount of stored energy:

- LH_2 is lighter (m = 0.38 x LNG)
- **LH₂ is bigger** (V = 2.4 x LNG)

The current use of LNG as a maritime propulsion fuel is paving the way for use of LH₂ for vessels.

SF-BREEZE Operating Requirements

- High-speed commuter ferry in an ocean bay environment – true commercial competitive service
- 35 kts top speed, 23 nm one-way
- Each round trip would use about 400 kg LH₂
- Daily logistics:
 - 1. Two morning round trips (~100 nm)
 - 2. Refuel in less than 1 hr at midday
 - 3. Two afternoon round trips (~100 nm)
 - 4. Refuel again at night

The final SF-BREEZE design meets all requirements

SF-BREEZE Fueling Characteristics

1,200 kg (~4,800 gallons) LH₂ tank

Vaporizers

Each round trip uses about **400 kg** of LH₂

Bunkering connection

A comprehensive regulatory assessment was performed by all partners.

USCG:

- Office of Design and **Engineering Standards**
- Marine Safety Center
- Sector San Francisco
- **Liquid Gas Carrier National** Center of Expertise

American Bureau of Shipping

Elliott Bay Design Group

Sandia National Labs

Red and White Fleet

MARAD

Findings:

- No regulatory show-stoppers
- 62 of 68 design aspects found covered by design basis documents
- Gas dispersion analyses required for suggested hazardous zone exceptions

Example hazardous zone exception

- Qualitatively, it appears that the high buoyancy of hydrogen precludes the need for a hazardous zone to extend lower than the elevation of release.
- Quantitative gas dispersion analysis is required for Class and Flag approval.

Outline

- SF-BREEZE Feasibility Study
 - Why H2
 - Initial design

Gas Dispersion Analysis

- Abnormal Blowdown from LH₂ Tank
- 2. Normal "Boiloff"
- 3. Leak in Fuel Cell Room

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

Examination of Maritime Hazardous Zone Regulations Applied to Hydrogen

Gas Dispersion Analysis

- Goal
 - Inform accurate overall hazardous zone requirements for hydrogen
- Benefit of defining hazardous zones for hydrogen
 - Enable faster and easier approval by reducing the need for gas dispersion studies on every future vessel submitted for approval
 - Avoid placing undue burden on vessel design and layout
 - Avoid situations that are unsafe
- Approach
 - Define most significant leak scenarios with stakeholders: US Coast Guard,
 American Bureau of Shipping, DNV-GL
 - Perform detailed modeling of these initial scenarios
 - Define whether a need for follow-on scenario studies

H₂ Release Scenarios

- 1. Abnormal Blowdown from LH₂ Tank
 - Are the Hazardous Zones in the right place?
 - Maximum release
 - Docked vs. moving

- 2. Normal "Boiloff"
- Leak in Fuel Cell Room
 - Equivalent to engine room
 - Concerned about ventilation, overpressure and fire.
 - Sensors will shut off supply quickly

©Hydrogenics Corp.

Computational Fluid Dynamics (CFD)

- Sandia's Sierra Suite: Fuego incompressible flow solver
 - Reynolds' Averaged Navier-Stokes (RANS)
 - Variables adapted for "jet in crossflow" conditions
 - Small scale turbulence is averaged, so dissipation is under predicted
- Wind speeds:
 - 0 knots calm day at docks
 - 5 knots normal wind at docks
 - 30 knots moving or very windy at docks
- Wind is assumed constant laminar flow for entire length of the release
 - Conservative results, especially for long-length releases and high-wind speeds

Outline

SF-BREEZE Feasibility Study

Gas Dispersion Analysis

- Abnormal Blowdown from LH₂ Tank
- 2. Normal "Boiloff"
- 3. Leak in Fuel Cell Room

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

Examination of Maritime Hazardous Zone Regulations Applied to Hydrogen

Scenario 1: Abnormal Blowdown Opened Pressure Relief Device from Large LH₂ Tank

- Full Blowdown of LH₂ tank through a Vent Stack
 - Tank Dimensions
 - 150 PSI
 - ~4500 gallons
 - 1 inch leak through valve
 - ~ 6 minutes to empty
 - Vent Stack
 - ~7 inch internal diameter
 - 25 feet tall (7.5 m)
 - Modeled as straight up

Worst Case: Blowdown when tank is 90% vapor

- Two phases in tank: liquid and vapor
- Leak will dump vapor quickly, then be limited to "boil off" amounts
 - Only modelled the vapor release
- Biggest H₂ release comes from tank with mostly vapor
 - 10% liquid for cases shown
- Tank empties vapor in ~6 minutes

CFD of SF-BREEZE H₂ Release Without Wind

CFD of SF-BREEZE LH₂ Release Without Wind

- White shows flammable mass with volumetric concentration between 8%-75%
- Flammable Region Reaches ~50 m high
 - Max Height at about 20 sec

CFD of SF-BREEZE LH₂ Release With 5 knot Wind 5 knot Wind Time = 6 432 se

 White shows flammable mass with volumetric concentration between 8%-75%

- Jet-in-Crossflow creates counterrotating vortices
- Light weight H₂ pushed by wind
- Max: 20 m long,8 m high @ 14 sec

45 m long

CFD of SF-BREEZE LH₂ Release With 30 knot Wind

Worst case, will likely dissipate at shorter lengths

Wind speed increases dissipation

H ₂ Mass	No Wind	5 Knots	30 Knots
Total	28.1 kg	28.0 kg	27.6 kg (out end)
Flammable	25.3 kg	23.8 kg	21.1 kg

Buoyancy

- Flammable concentrations will be positively buoyant
- Near the vent is coldest, but has highest H2 concentration
- Specific Gravity = ρ / $\rho_{\rm air}$
 - $\rho_{air} = 0.001196 \text{ kg/m}^3$
- SG < 1 is positively buoyant

Comparison to LNG

- Same:
 - Leak size 1"
 - Tank pressure 150 psi
 - Tank volume 4500 gal
- Different:
 - Mass flow rate
 - Momentum
 - Time to empty

Comparison to LNG - 5 knot wind

Equivalent leak size, tank pressure, and tank volume

LNG Release

10 m long, 9.5 m high

H2 Release

20 m long, 7.7 m high

Outline

- SF-BREEZE Feasibility Study
- Gas Dispersion Analysis
 - 1. Abnormal Blowdown
 - 2. Normal Boiloff
 - 3. Fuel cell room

Scenario 2: Normal Venting due to Boiloff

- Pressure will build up if LH₂ tank is not used for several days
 - Tank Dimensions
 - 150 PSI
 - ~4500 gallons
 - Vent Stack
 - ~7 inch internal diameter
 - 25 feet tall (7.5 m)

- 1200kg tank -> 12 kg/day boil off
- Currently intentional releases of H₂ are not allowed while docked
 - Turn on fuel cells or some other way of reducing pressure needed

Scenario 2: Boil-off Boil-off produces no flammable mass

- Steady state in tank release limited by liquid hydrogen boiling to vapor and escaping
- 1% of tank per day assumed (0.6% is expected)
- 1200kg tank -> 12 kg/day boil off through a 2" valve

Outline

SF-BREEZE Feasibility Study

Gas Dispersion Analysis

- Abnormal Blowdown from LH2 Tank
- 2. Normal "Boiloff"
- 3. Leak in Fuel Cell Room

San Francisco Bay Renewable Energy Electric vessel with Zero Emissions (SF-BREEZE)

Examination of Maritime Hazardous Zone Regulations Applied to Hydrogen

Scenario 3: Leak inside a fuel cell room

HYDROG(E)NICS

SHIFT POWER | ENERGIZE YOUR WORLD

Outflow vents
Inflow vents

- Ventilation:
 - 200 cfm from 9 vents along the floor
 - Outflow vents near ceiling
- Leak from top of one rack
 - Pressure sensors would trigger automatic shut off
 - Stopped after 2 sec (conservative)

Fuel Cell Room

- Leak
 - Pressure = 100psi, 1" leak diameter
 - Starts at 600 sec (10 min to set up ventilation)
 - Stopped after 2 sec

Flammable volume of H₂ can be used to determine potential overpressure hazard

Flammable mass: Cumulative fuel mass mixed into flammable concentrations (mixtures between 8% and 75% by volume for H_2 -air)

$$\Delta p = p_0 \left\{ \left[\frac{V_T + V_H}{V_T} \frac{V_T + V_{stoich}(\sigma - 1)}{V_T} \right]^{\gamma} - 1 \right\}$$
C. R. Bauwens, S. Dorofeev, Proc. ICHS, 2013.

 p_0 : Ambient pressure V_T : Facility volume

 V_H : Expanded volume of pure H_2

 V_{stoich} : Stoichiometric consumed H₂ volume σ : Stoichiometric H₂ expansion ratio

 γ : Air specific heat ratio (1.4)

Potential Consequences:

$$\Rightarrow \Delta p_{max} = 7.7kPa$$

Chance of small injuries from overpressure — Local blast waves not considered

Summary of Results

Scenario 1: Abnormal Blowdown

- Hydrogen plume shape is greatly influenced by the wind due to large density difference compared to air
- Plume is always positively buoyant even when very cold H₂ (70 K)
- Plume of flammable H₂ will be longer than plume of flammable natural gas

Scenario 2: Normal Boil-off

During "boil off" venting there is no flammable concentration of gas

Scenario 3: Fuel cell room leak

- Large leak in fuel cell room will have flammable concentrations for only a very short period of time after source is shut off
- If ignited, will produce moderate overpressures

Next Steps

- Consultation with stakeholders, in particular USCG, ABS, and DNV-GL:
 - Refine results
 - Determine how to apply to hazardous zones in the code
 - Define follow-on studies

Thank You!

For more information visit: maritime.sandia.gov

Contact Information

Gaby Bran-Anleu

(925) 294-1363

gabrana@sandia.gov

Joe Pratt

(925) 294-2133

jwpratt@sandia.gov

Work funded by **US DOT** / **Maritime Administration** through the **Maritime Environmental and Technical Assistance (META) program**

BACK-UP SLIDES

SF-BREEZE by the numbers

- Length 109' x Beam 33'
 x Depth 11.25'
- Full Load Draft ~ 4.6'
- Full Load Displacement ~133 LT
- Passengers: 150
- Service Speed: 35 knots
- Tonnage: 79.86 GRT
- Passenger Cabin Forward, Fuel Cells Aft
- LH₂ tank located on centerline (>B/5 from side)
- Propulsion power 4.4 MW, installed power 4.92 MW
- Optimization on this design is currently underway

Propulsion system architecture

- 1. Fuel cells feed DC-DC power converter to regulate voltage
 - -41 Fuel cell units -120 kW x 41 = 4.92 MW
 - 4.6 MW for propulsion, 120 kW for other loads, remainder is margin
- 2. DC-DC power converters feed DC-AC power inverters
- DC-AC power inverters feed AC PM propulsion motors (2 x 2 MW Permanent Magnet AC motors)
- AC PM propulsion motors feed linear jet or water jet propellers (2 x 2.6 MW)

Simulation Validations

Blowdown release rates calculated via Sandia network flow solver (NETFLOW)

Winters, SAND Report 2009-6838.

Sandia "FUEGO" CFD flow solver

- Finite volume
- Compressible Navier-Stokes
- k-ε turbulence model
- Slip isothermal walls (294 K)
- ~10 cm mesh spacing

Houf et al., Int J H2Energy, 2013.

Methodology previously validated against large-scale hydrogen blowdown release experiments

Purpose

- Goal
 - Inform accurate hazardous zone requirements for hydrogen
- Benefit
 - Avoid situations that are unsafe
 - Avoid placing undue burden on vessel design and layout
 - Enable faster and easier approval

Method

- A. CFD (gas dispersion) on most typical release scenarios with hydrogen and natural gas (to see the differences)
 - Work with experts at USCG and Class to define most representative vent/release scenarios
 - 2. Configure and run models
 - 3. Analyze results
 - 4. Present results to MARAD, USCG, and Class and revise/refine/repeat as needed
- B. Harmonization of NFPA and IGF prescriptive hazardous zones
- C. Using results of (A) and (B) propose revisions to IGF codes as needed

LH₂ and LNG are similar cryogenic fuels

LH₂:

Liquid Normal Boiling Point = 20 K (-253 C).

Liquid Density = 71 g/L

Lower Heating Value = 120 MJ/kg

LNG (LCH $_4$):

Liquid Normal Boiling Point = 111 K (-162 C).

Liquid Density = 422 g/L

Lower Heating Value = 45 MJ/kg

For the same amount of stored energy:

- LH₂ is lighter
 (m = 0.38 x LNG)
- LH₂ is bigger
 (V = 2.4 x LNG)

LNG and LH₂ are stored in similar ways:

LH₂ Storage Tank on Trailer

LNG Storage Tank on Trailer

Temperature: Cold at high concentrations

Hazardous Zones Philosophy

- Based on guidance for LNG in IGF code
 - USCG recommendation
 - Comparison of LH₂ and LNG Properties With a Focus on Safety Sandia
- Emergency Shut Down (ESD) arrangement
 - Two independent fuel cell rooms provide redundancy
- LH₂ tank and fuel delivery components located on open deck
- Bunkering station located on open deck